scholarly journals Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploidPoecilia formosa

Cytometry ◽  
2000 ◽  
Vol 39 (2) ◽  
pp. 91-95 ◽  
Author(s):  
D.K. Lamatsch ◽  
C. Steinlein ◽  
M. Schmid ◽  
M. Schartl
2021 ◽  
Vol 5 (1) ◽  
pp. 14-16
Author(s):  
Raden Muhamad Imaduddin Yumni ◽  
Mohd Fauzihan Karim ◽  
Mohd Razik Midin

The family of Cucurbitaceae consists of species with economical and nutritional value. Morphologically, there are only few differences between Cucumis species. The interspecific and intraspecific variation in the genome size of the Cucumis species are not discovered yet. Due to this, this study aims to determine the genome size of C. sativus, C. melo inodorus and C. melo cantalupensis using flow cytometry (FCM) method. Nuclei suspension of selected Cucumis species were extracted using LBO1 lysis buffer by manual chopping technique and stained by propidium iodide priot to FCM analysis. Genome size of C. sativus, C. melo inodorus (Honeydew) and C. melo cantalupensis (Rockmelon) were determined by using Glycine max (Soybean) as an external reference standard (2C = 2.5 pg). This study found that the genome size of C. sativus, C. melo inodorus and C. melo cantalupensis estimated to be 2.83 pg, 3.00 pg and 3.47 pg respectively. The genome size data obtained from this study can be used in future genome studies as well as species characterization.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1271-1274
Author(s):  
Thomas G. Ranney ◽  
Tracy H. Thomasson ◽  
Kristin Neill ◽  
Nathan P. Lynch ◽  
Mark Weathington

Aucuba have been cultivated for centuries and are valued as adaptable, broad-leaved, evergreen shrubs that also can have attractive, spotted variegations on the foliage. Improved understanding of the cytogenetics and heritability of specific traits, for specific clones and cultivars, can provide basic information to help facilitate the breeding and improvement of aucuba. The objectives of this study were to determine ploidy level and relative genome size of a diverse collection of species and cultivars of aucuba using flow cytometry and cytology and to make additional observations on heritability of spotted leaf variegation. Chromosome counts were 2n = 2x = 16 for Aucuba chinensis (A. omeiensis), 2n = 4x = 32 for A. japonica ‘Rozannie’, and 2n = 6x = 48 for A. sp. ‘Hosoba’. Relative 2C genome size for the 57 taxa varied from 13.8 pg for A. obcordata to 42.0 pg for A. ‘Hosoba’ and fell within three discrete groups consistent with cytotype. Genome size for diploid taxa (A. chinensis and A. obcordata) ranged from 13.8 to 21.0 pg, tetraploids (A. himalaica var. oblanceolata, A. japonica, and A. japonica var. borealis) ranged from 28.8 to 31.2 pg, and the first-ever reported hexaploids (A. ‘Hosoba’ and A. sp. – Vietnam) ranged from 40.5 to 42.0 pg. Unlike prior reports that indicated inheritance of spotted variegations were extranuclear genes that were maternally inherited, we found that the spotted leaf trait expressed in A. japonica ‘Shilpot’ appears to be a nuclear gene that is inherited in a quantitative fashion and not strictly maternal. These data provide an enhanced foundation for breeding improved aucuba.


Plant Science ◽  
2013 ◽  
Vol 207 ◽  
pp. 72-78 ◽  
Author(s):  
Sílvia Castro ◽  
Maria M. Romeiras ◽  
Mariana Castro ◽  
Maria Cristina Duarte ◽  
João Loureiro

2018 ◽  
Vol 2 (2) ◽  
pp. 1 ◽  
Author(s):  
Mickael Bourge ◽  
Spencer Creig Brown ◽  
Sonja Siljak-Yakovlev

Flow cytometry has become the method of choice to measure the DNA content (genome size) in plants. Ease of sample preparation, fast acquisition, and accurate measurements have made the method popular in the domains of plant cell biology, systematics, evolution, genetics and biotechnology. Although the cell wall is a problem when isolating plant cells, cytometry remains a powerful tool in plant sciences. Based on our 30-years’ experience in this field, this review will focus at first on genome size measurement using simply isolated nuclei: the good practice for acquisition, nuclei isolation, appropriate buffers, kind of tissues to use. The second part will briefly review what kind of measurements it is possible to make in plant cytometry, and for what purpose: base composition, ploidy level, cell cycle, endoreplication, seed screening, and nuclei/chromosomes sorting. We will address troubleshooting. The commonly-used mathematic tools will be discussed.


1994 ◽  
Vol 57 (4) ◽  
pp. 303-313 ◽  
Author(s):  
Fréderique Ollitrault-Sammarcelli ◽  
J.M. Legave ◽  
Nicole Michaux-Ferriere ◽  
Anne Marie Hirsch

2020 ◽  
Vol 4 (2) ◽  
pp. 72-75
Author(s):  
Mohd Razik Midin ◽  
Muhammad Irfan Fikri ◽  
Siti Sarah Zailani

AbstractChristia vespertilionis (butterfly wing plant) is an ornamental plant originated from South East Asia with reported usage in traditional medicine practice and potential as an anticancer and antitumor. This research aims to estimate the genome size of C. vespertilionis via flow cytometry (FCM) method. The research was conducted with the optimisation of nuclear suspension preparation followed by the genome size estimation. Two chopping techniques [manual chopping (MC) and BDTM Medimachine (MM)] and two lysis buffers (Otto and LBO1) were tested. Otto buffer with manual chopping was found to be the most suitable method, generated fine DNA peak with minimum debris background, and coefficient of variation (CV) value less than 3%. Five replicates of the FCM analysis were made for the genome size determination. The estimated genome size of C. vespertilionis was found to be 3.22 pg by using Glycine max cv. Polanka (2C=2.5pg) as an external reference standard. Further comparison with other Christia species was not possible due to the lack of data on genome size. The genome size data of C. vespertilionis can be useful for future morphology and genetics studies of Christia species.


Phytotaxa ◽  
2021 ◽  
Vol 498 (1) ◽  
pp. 25-34
Author(s):  
DAVID HORÁK ◽  
MARTIN HAJMAN ◽  
MICHAL HRONEŠ ◽  
MOJMÍR PAVELKA

A new natural hybrid Saxifraga ×klimesii Hajman, Horák & Hroneš from Ladakh (NW India) is described and illustrated. This hybrid resulted from cross between Saxifraga meeboldii Engler & Irmscher and Saxifraga pulvinaria Harry Smith. The morphology of the hybrid plants and its parental taxa was evaluated using morphometric analysis of both living plants and herbarium specimens. An artificial cross was also made to compare its morphology with spontaneous hybrids. Ploidy level and relative genome size was established using flow cytometry. Saxifraga ×klimesii is intermediate in morphology and relative genome size between both parents. It differs from S. meeboldii by shorter and wider rosette leaves and lighter yellow, larger and wider petals and from S. pulvinaria by larger rosettes, often more than one pore on leaves and usually yellow coloured petals. A lectotype is selected for S. pulvinaria.


Sign in / Sign up

Export Citation Format

Share Document